What can we do with old blades?

Carl Auder

Chemical recyclingReuse

SERO årsstämma 2021-09-10 Alann Andre alann.andre@ri.se +46 76 784 43 46

Cecilia Mattsson cecilia.mattsson@ri.se +46 72 246 08 53

IEA Wind TCP Task 45: Recycling wind turbine

RISE Research Institutes of Sweden

Division of Material and Production

Department of Polymer Material och Composites Unit Structural analysis and Modelling & Unit Materials, Processes and Recycling

Expertise

- Composite materials manufacturing, testing and modelling; structural analysis and NDT.
- Composite mechanics and micromechanics, material model development
- Sustainable composites: recycling (mechanical and chemical), circular design, re-use of EoL composite structures
- HTL/Solvolysis and pyrolysis and elucidation of chemical composition of produced oils

Interests

- **Topics:** Design for recycling, sustainable and economical viable recycling solutions, mechanical and chemical recycling, re-use of blades
- Looking for: International contacts and possible to build larger international projects over the whole value chain and broader increased knowledge within this scientific field.
- Contribution:
 - Expertise in Chemical recycling: HTL/Solvolysis (small scale), Pyrolysis (batch, 1 kg scale), chemical analysis of oils
 - Expertise in re-use of EoL composite structures and sustainable material design of composites

Contact persons

Alann André PhD, Senior Scientist at RISE Research Institutes of Sweden +46 76 784 43 46 alann.andre@ri.se

Cecilia Mattsson PhD, Scientist at RISE Research Institutes of Sweden +46 72 246 08 53 cecilia.mattsson@ri.se

Tilldelningsbeslut – dnr. 2021-28035 Avropsförfrågan omfattar/avser: IEA Wind TCP Task 45 – Recycling of Wind Turbine Blades Upphandlingsförfarande: Förenklat förfarande.

2021-09-01 – så länge tasken pågår men max 4 år.

Avtalstyp (avrop eller leveransavtal): Avropsavtal.

Beslut

Energimyndigheten beslutar att följande leverantör tilldelas kontrakt:

RISE SICOMP AB

Avtalstid:

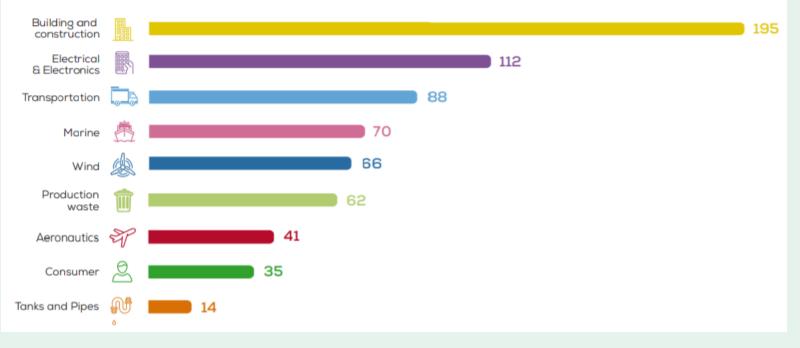
Projects

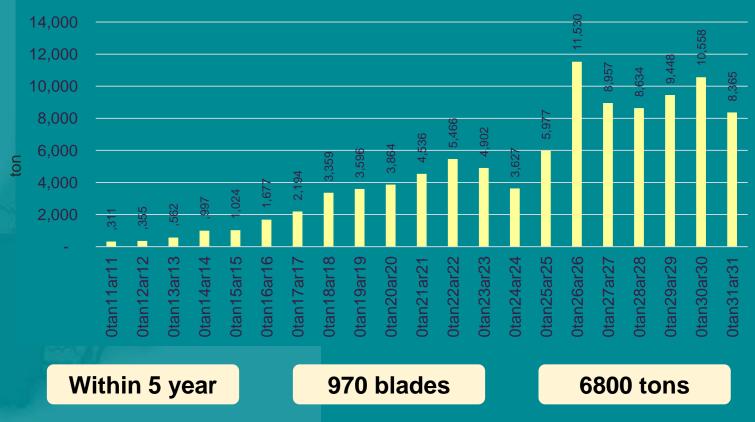
- **RECINA (2020-2021)** Re-use of EoL composite structures in the design of a pedestrian bridge deck.
- **Pyrolysis GFRP & CFRP (2020-2022)** Resource-efficient recycling via pyrolysis on an industrially relevant scale
- RECOMP (2019-2021) Circular streams from GFRP
- **Cirkomp (2021)** New technology for circular use of fibers and polymers from composite materials.
- **REKOVIND (2019-2020)** Chemical recycling of glass fiber composites from wind turbine blades

First generation wind turbines installed in 1990 - need to be recycled

- 12 000 wind turbines reach End-of-Life within 5 years (36,000 blades)
- 2 MW turbine with three 50 m blades consists of about 20-ton GFRP (one blade 7 tons)
- 30% of all recreational boats are near end of life...
 - Europe 6 million pleasure boats (2015, Boatcycle)
 - Estimated in Europe 140,000 used boats / year, about 160,000 tons GFRP / year (Sirris)
- Last owner responsible

Composite recycling solution: landfill and incineration - no sustainable solution

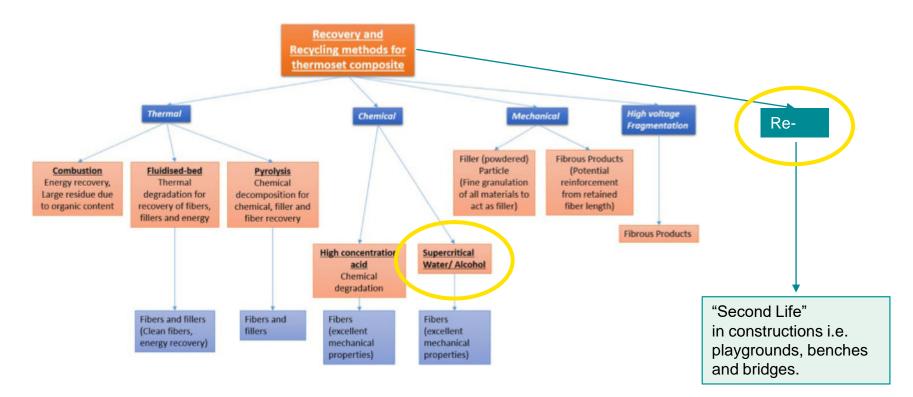

https://www.bloomberg.com/news/features/2020-02-05/wind-turbine-blades-can-t-be-recycled-so-they-re-piling-up-in-landfi https://www.svd.se/sa-undviker-vi-att-skapa-fler-giftoar


Europe by 2025 – ca 700 000 tons of composite waste !

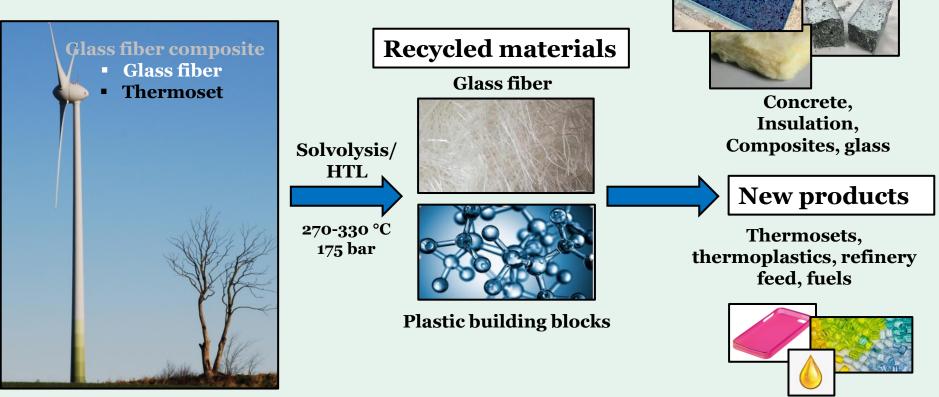
Estimated composite waste per sector in thousands of tonnes in 2025


SWEDEN – What are the numbers?

EOL wind turbine blade material per year in Sweden


End-of-Life wind turbine blades

- complex material composition
- unknown composition


- Thermosets
 (epoxy, polyester, vinyl ester, PUR)
- Thermoplastic
 (PVC, PET)
- Balsa wood

Overview of composite recycling technologies

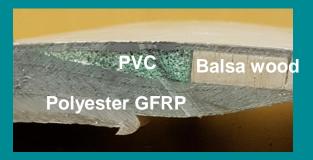
Utekar et. al (2021). Comprehensive study of recycling of thermosetting polymer composites–Driving force, challenges and methods. *Composites Part B: Engineering*, 207, 108596. https://www.sciencedirect.com/science/article/pii/S1359836820336428#bib85

Chemical recycling of GFRP from wind turbine blades with solvolysis

Chemical recycling – Solvolysis/HTL of thermoset composites from wind turbine blades (pieces)

Results:

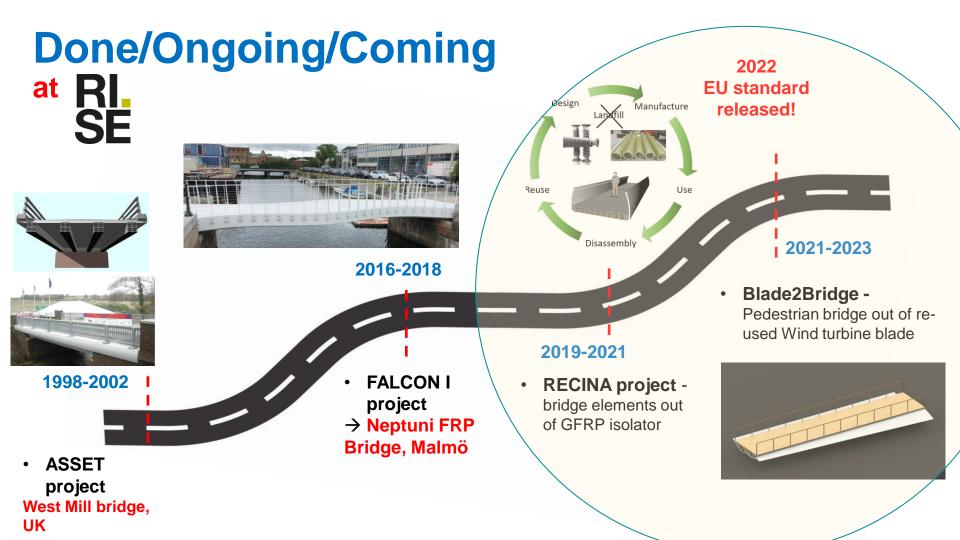
- Long reaction times needed: 20 h at high temperature and pressure (270 °C, 175 bar)
- Low yield of valuable "solvolysis oil" <15% due to high fiber/fillers content. Can be a substitute for fossil oil after additional upgrading similar quality as bio-oil from wood. Need upgrading before used in refineries.
- Recycled glass fibers mixed with clean and partly clean glass fibers. In total approx. 10% thermoset left on glass fibers.



Product fraction from blade piece A			
Glass fiber (B)	65 %		
Solvolysis oil (C)	15 %		
Woodfibers (D)	13 %		
Water soluble	7 %		

Results published in scientific journal October 2020 Chemical recycling of End-of-Life wind turbine blades by solvolysis/HTL. *IOP Conference Series: Materials Science and Engineering* (Vol. 942, No. 1, p. 012013). IOP Publishing.

Summary of solvolysis of wind turbine blades



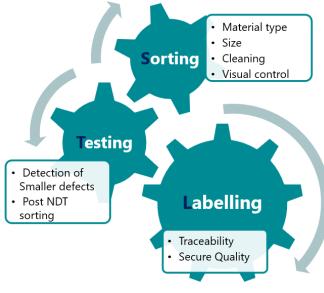
- All different materials are possible to degrade or separate by solvolysis:
 - Polyester are more degradable than epoxy GFRP
 - Foam cores and balsa wood are possible to separated in a pre-step process.
- Challenge to develop a cost effective solvolysis process for EOL material
- Recycled glass fibers more expensive and lower quality than virgin glass fibers 10-20 SEK/kg.

ReUse of FRP in infrastructure

Our idea aims to promote sustainability in the infrastructure sector by Re-using durable and lightweight FRP materials

"Second Life" solution:

- → Great potential within construction and infrastructure
- Resource efficient solution transform waste material into resource
- Uses material that goes to landfill/energy recovery
- Strong and durable material
- Low maintenance costs
- Replace high CO2 emission materials such as concrete and steel

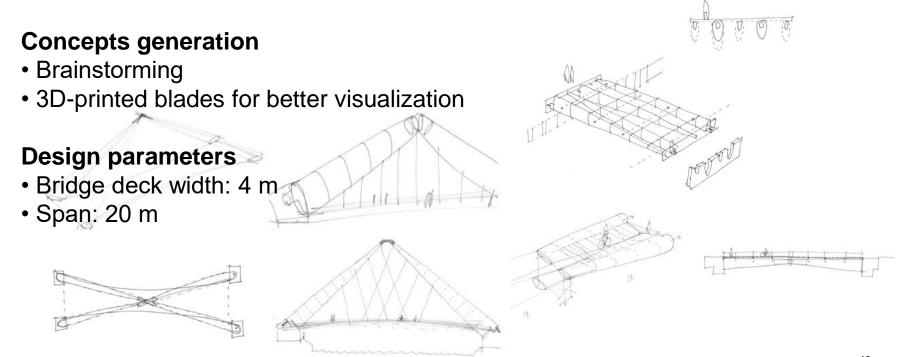

Materials for Wind Turbine Blades: An Overview Mishnaevsky et. al. materials 2017 Bank et. al. Concepts for Reusing Composite Materials from DecommissionedWind Turbine Blades in Affordable Housing 2018 https://www.windpowerengineering.com/mechanical/blades/recycling-wind-turbineblades/

The "wind forest"

The next generation infrastructure

RI. SE

Robust quality processes Circularity enabler



André, A., Kullberg, J., Nygren, D., Mattsson, C., Nedev, G., & Haghani, R. (2020, October). **Re-use of wind turbine blade for construction and infrastructure applications**. In *IOP Conference Series: Materials Science and Engineering* (Vol. 942, No. 1, p. 012015). IOP Publishing.

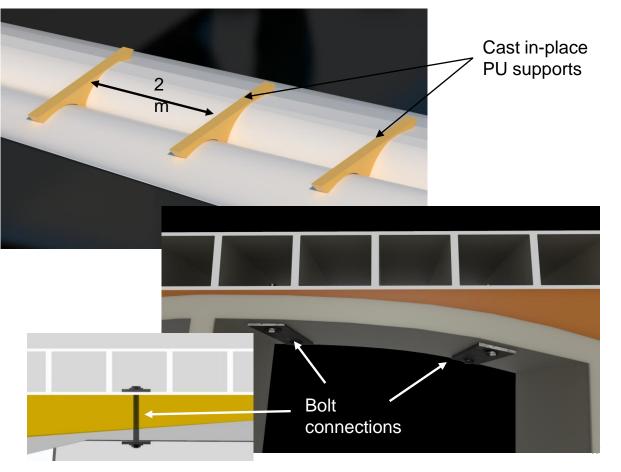
Find a cost effective and viable solution to reuse wind turbine blades in innovative bridge designs and increase the lifetime of the blades.

Further design

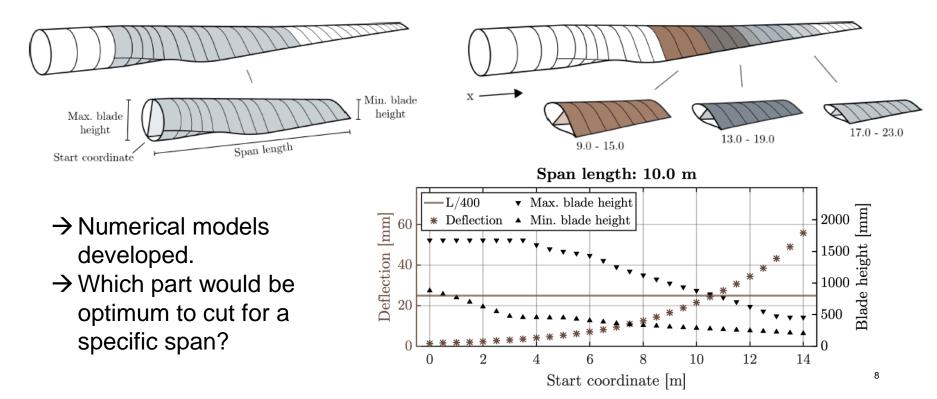
Bridge deck

- Box section in FRP
- 80 mm high
- Spans 2 m

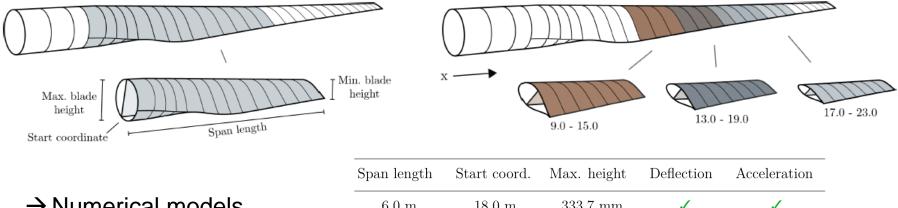
Connections


- Polyurethane
- Bolts

Railing


• 1.4 m high

Supports

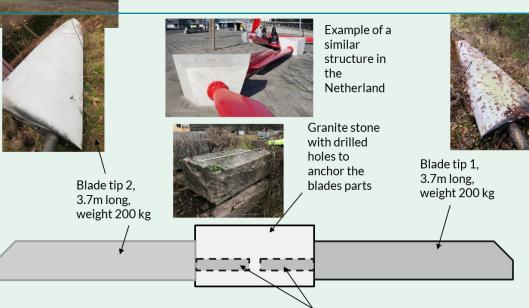

Elastomeric bearings

<u>Further design</u> – Recent analysis – Work around a real decommissioned blade

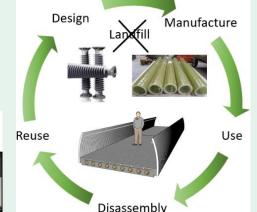
<u>Further design</u> – Recent analysis – Work around a real decommissioned blade

- → Numerical models developed.
- → Which part would be optimum to cut for a specific span?

Span length	Start coord.	Max. height	Deflection	Acceleration
6.0 m	18.0 m	$333.7 \mathrm{~mm}$	1	1
8.0 m	$14.5~\mathrm{m}$	$452.0~\mathrm{mm}$	\checkmark	1
10.0 m	9.0 m	$993.8~\mathrm{mm}$	\checkmark	1
$12.0 \mathrm{m}$	$5.2 \mathrm{m}$	$1485.0~\mathrm{mm}$	\checkmark	1
14.0 m	$1.75~\mathrm{m}$	$1675.0~\mathrm{mm}$	\checkmark	1
$16.0 \mathrm{m}$	$1.6 \mathrm{m}$	$1675.0~\mathrm{mm}$	\checkmark	×
20.0 m	-	$1675.0~\mathrm{mm}$	×	×

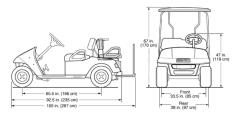

First demonstrator in Sweden from old blades ReUse of FRP – Lane divider from End-of-Life

 Two 4m long tips of EoL blades will be used with a center piece of stone (granite)

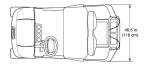

Replacing lane divider
 in concrete sov²

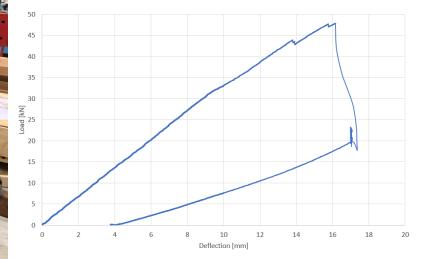
• The demonstrator to be built soon in 2021

Reuse of Composite Components in Infrastructure

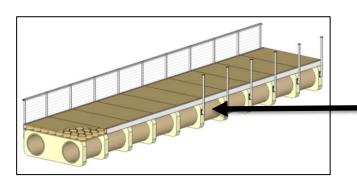


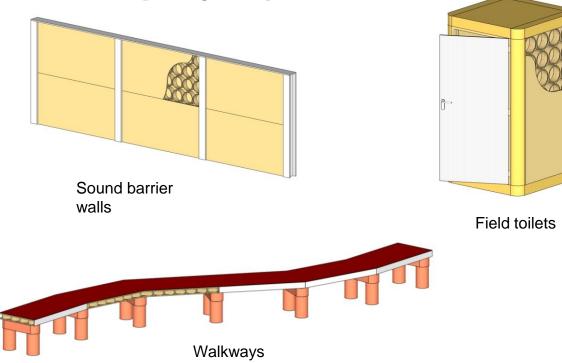
GFRP production waste reused in innovative bridge decking system


→ Sandwich panel

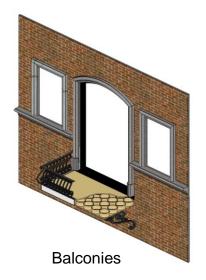

Reuse of Composite Components in Infrastructure (RECINA project)

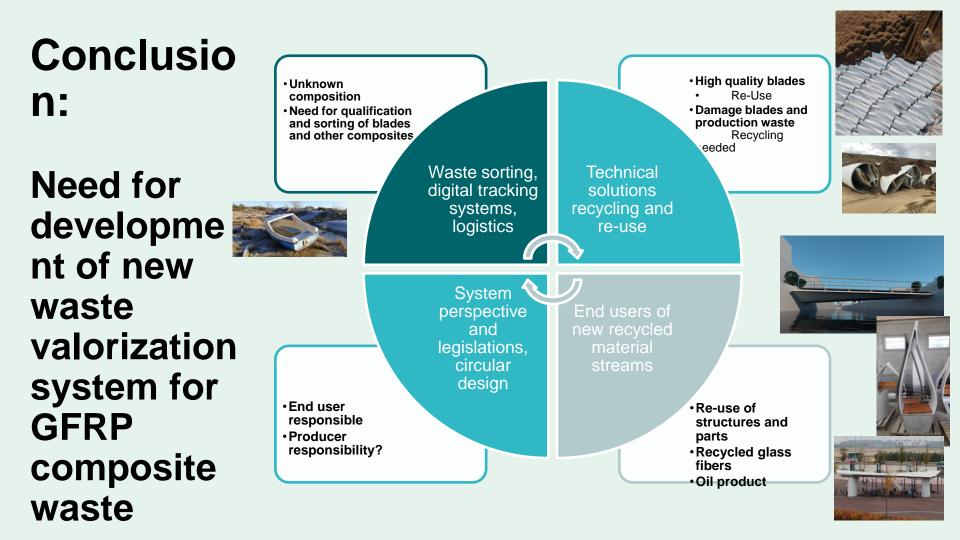
failure (48kN)


NOTE: Shaded Area Indicates SHUTTLE 2+2


Reuse of Composite Components in Infrastructure (RECINGOR OF Project) GFRP

- 600kg (lightweight)
- x7 lighter than a concrete alternative
- x2-3 more durable than timber alternative
- → Cost-effective and circular




Reuse of Composite Components in Infrastructure (RECINA project)

Roofing panels

Thank you for your attention

Rekovind

Chemical recycling of glass fiber composite from wind turbine blades

ReComp Creating circular streams from GFRP composite waste RECINA REuse of Composite parts for Infrastructure Applications

Sweden's Innovation Agency

Partners Recomp: RISE, Nimbus boats, MTC, LTU, SMTF, Volvo Cars, Renova, PodComp, BladeSolutions, Librixer, Skene skog ÅVC Partners RECINA: RISE, Chalmers, Composite Design, Marstrom Composite, Eventhotell, ABB Blade samples: Emercon (Germany), Anmet (Polen)

> Alann Andre alann.andre@ri.se +46 10 228 49 74

Cecilia Mattsson cecilia.mattsson@ri.se +46 72 246 08 53